ATP consumption by uncoupled mitochondria activates sarcolemmal K(ATP) channels in cardiac myocytes.
نویسندگان
چکیده
We tested whether close coupling exists between mitochondria and sarcolemma by monitoring whole cell ATP-sensitive K(+) (K(ATP)) current (I(K,ATP)) as an index of subsarcolemmal energy state during mitochondrial perturbation. In rabbit ventricular myocytes, either pinacidil or the mitochondrial uncoupler dinitrophenol (DNP), which rapidly switches mitochondria from net ATP synthesis to net ATP hydrolysis, had little immediate effect on I(K,ATP). In contrast, in the presence of pinacidil, exposure to 100 microM DNP rapidly activated I(K,ATP) with complex kinetics consisting of a quick rise [time constant of I(K,ATP) increase (tau) = 0.13 +/- 0.01 min], an early partial recovery (tau = 0.43 +/- 0.04 min), and then a more gradual increase. This DNP-induced activation of I(K,ATP) was reversible and accompanied by mitochondrial flavoprotein oxidation. The F(1)F(0)-ATPase inhibitor oligomycin abolished the DNP-induced activation of I(K,ATP). The initial rapid rise in I(K,ATP) was blunted by atractyloside (an adenine nucleotide translocator inhibitor), leaving only a slow increase (tau = 0.66 +/- 0.17 min, P < 0.01). 2,4-Dinitrofluorobenzene (a creatine kinase inhibitor) slowed both the rapid rise (tau = 0.20 +/- 0.01 min, P < 0.05) and the subsequent declining phase (tau = 0.88 +/- 0.19 min, P < 0.05). From single K(ATP) channel recordings, we excluded a direct effect of DNP on K(ATP) channels. Taken together, these results indicate that rapid changes in F(1)F(0)-ATPase function dramatically alter subsarcolemmal energy charge, as reported by pinacidil-primed K(ATP) channel activity, revealing cross-talk between mitochondria and sarcolemma. The effects of mitochondrial ATP hydrolysis on sarcolemmal K(ATP) channels can be rationalized by reversal of F(1)F(0)-ATPase and the facilitation of coupling by the creatine kinase system.
منابع مشابه
High glucose regulates the activity of cardiac sarcolemmal ATP-sensitive K+ channels via 1,3-bisphosphoglycerate: a novel link between cardiac membrane excitability and glucose metabolism.
Because we were interested in assessing glucose-mediated regulation of the activity of sarcolemmal ATP-sensitive K(+) channels (K(ATP) channels) (which are closed by physiological levels of intracellular ATP and serve to couple intracellular metabolism with the membrane excitability in the heart) during ischemia, we performed experiments designed to test whether high extracellular glucose would...
متن کاملBepridil, an antiarrhythmic drug, opens mitochondrial KATP channels, blocks sarcolemmal KATP channels, and confers cardioprotection.
Bepridil, which is clinically useful in the treatment of arrhythmias, has been reported to inhibit sarcolemmal ATP-sensitive K(+) (sarcK(ATP)) channels. However, the effect of bepridil on mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels remains unclear. The objective of the present study was to determine whether bepridil activates mitoK(ATP) channels and confers cardioprotection. SarcK(AT...
متن کاملPharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels.
A variety of direct and indirect techniques have revealed the existence of ATP-sensitive potassium (KATP) channels in the inner membranes of mitochondria. The molecular identity of these mitochondrial KATP (mitoKATP) channels remains unclear. We used a pharmacological approach to distinguish mitoKATP channels from classical, molecularly defined cardiac sarcolemmal KATP (surfaceKATP) channels en...
متن کاملSelective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection.
BACKGROUND Pharmacological evidence has implicated ATP-sensitive K(+) (K(ATP)) channels as the effectors of cardioprotection, but the relative roles of mitochondrial (mitoK(ATP)) and sarcolemmal (surfaceK(ATP)) channels remain controversial. METHODS AND RESULTS We examined the effects of the K(ATP) channel blocker HMR1098 and the K(ATP) channel opener P-1075 on surfaceK(ATP) and mitoK(ATP) ch...
متن کاملProtein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 280 4 شماره
صفحات -
تاریخ انتشار 2001